WU \#19 - k-means clustering

Math 154 - Jo Hardin

Thursday, November 18, 2021

Name: \qquad
Consider the following observations:

\#\# \# A	tibble: 5	x 3	
\#\#	ID	Age	Income
\#\#	<dbl>	<dbl>	<dbl>
\#\#	1	1	25
\#\#	2	2	30000
\#\#	3	3	40
\#\#	4	4	30000
\#\# 5	5	40	50000
		110000	

a. Find the (Euclidean) distance between person 1 and person 2.
b. Find the (Euclidean) distance between person 1 and person 3.

```
kmeans_data %>%
    mutate(scale(Age), scale(Income))
## # A tibble: 5 x 5
## ID Age Income `scale(Age)`[,1] `scale(Income)`[,1]
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 25 80000 -1.19 -0.261
## 2 2 30 100000 -0.447 0.608
## 3 3 40 90000 1.04 0.174
## 4 4 30 50000 -0.447 -1.56
## 5 5 40 110000 1.04 1.04
```

c. Using the scaled data, find the (Euclidean) distance between person 1 and person 2.
d. Using the scaled data, find the (Euclidean) distance between person 1 and person 3.
e. Are you convinced that person 1 is farther from person 2 or person 3 ?

Solution:

a. $\sqrt{5^{2}+20000^{2}}=20,000.00062$
b. $\sqrt{15^{2}+10000^{2}}=10,000.011$
c. $\sqrt{(-1.192+0.447)^{2}+(-0.261-0.608)^{2}}=1.145$
d. $\sqrt{(-1.192-1.044)^{2}+(-0.261-0.174)^{2}}=2.278$
e. Seemingly, person 1 is farther from person 3 because although their income differences are large in magnitude, they are not particularly different relative to the variability of incomes across the five individuals. Indeed, it is the ages that distinguish person 1 and 3 more strongly.

