
Math 154 – Fall 2021
Jo Hardin

sample problems, exam 1

1. Consider any of these dozen rules / plots http://www.stat.columbia.edu/~gelman/communication/
Wainer1984.pdf [just the plots are provided here: http://www.stat.berkeley.edu/~nolan/stat133/
Fall05/lectures/DirtyDozen.pdf]

(a) explain what is fundamentally wrong with it

(b) explain how to improve the graphic with the goal of better communicating the information

2. For each of the following diagrams, identify the data wrangling operation that is illustrated by the
arrow or the equal sign in the diagram. There is only one correct answer for each arrow (or equal sign)
in the diagram. Choose from the following operations:

arrange cbind filter mutate rbind pivot_wider select summarize group_by pivot_longer

(a)

dplyr::group_by(iris, Species)
Group data into rows with the same value of Species.

dplyr::ungroup(iris)
Remove grouping information from data frame.

iris %>% group_by(Species) %>% summarise(…)
Compute separate summary row for each group.

Combine Data Sets

Group Data

Summarise Data Make New Variables

ir ir
C

dplyr::summarise(iris, avg = mean(Sepal.Length))
Summarise data into single row of values.

dplyr::summarise_each(iris, funs(mean))
Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)
Count number of rows with each unique value of
variable (with or without weights).

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)
Compute and append one or more new columns.

dplyr::mutate_each(iris, funs(min_rank))
Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)
Compute one or more new columns. Drop original columns.

Summarise uses summary functions, functions that
take a vector of values and return a single value, such as:

Mutate uses window functions, functions that take a vector of
values and return another vector of values, such as:

window
function

summary
function

dplyr::first
First value of a vector.

dplyr::last
Last value of a vector.

dplyr::nth
Nth value of a vector.

dplyr::n
of values in a vector.

dplyr::n_distinct
of distinct values in
a vector.

IQR
IQR of a vector.

min
Minimum value in a vector.

max
Maximum value in a vector.

mean
Mean value of a vector.

median
Median value of a vector.

var
Variance of a vector.

sd
Standard deviation of a
vector.

dplyr::lead
Copy with values shifted by 1.

dplyr::lag
Copy with values lagged by 1.

dplyr::dense_rank
Ranks with no gaps.

dplyr::min_rank
Ranks. Ties get min rank.

dplyr::percent_rank
Ranks rescaled to [0, 1].

dplyr::row_number
Ranks. Ties got to first value.

dplyr::ntile
Bin vector into n buckets.

dplyr::between
Are values between a and b?

dplyr::cume_dist
Cumulative distribution.

dplyr::cumall
Cumulative all

dplyr::cumany
Cumulative any

dplyr::cummean
Cumulative mean

cumsum
Cumulative sum

cummax
Cumulative max

cummin
Cumulative min

cumprod
Cumulative prod

pmax
Element-wise max

pmin
Element-wise min

iris %>% group_by(Species) %>% mutate(…)
Compute new variables by group.

x1 x2
A 1
B 2
C 3

x1 x3
A T
B F
D T+ =

x1 x2 x3
A 1 T
B 2 F
C 3 NA

x1 x3 x2
A T 1
B F 2
D T NA

x1 x2 x3
A 1 T
B 2 F

x1 x2 x3
A 1 T
B 2 F
C 3 NA
D NA T

x1 x2
A 1
B 2
C 3

x1 x2
B 2
C 3
D 4+ =

x1 x2
B 2
C 3

x1 x2
A 1
B 2
C 3
D 4

x1 x2
A 1

x1 x2
A 1
B 2
C 3
B 2
C 3
D 4

x1 x2 x1 x2
A 1 B 2
B 2 C 3
C 3 D 4

Mutating Joins

Filtering Joins

Binding

Set Operations

dplyr::left_join(a, b, by = "x1")
Join matching rows from b to a.

a b

dplyr::right_join(a, b, by = "x1")
Join matching rows from a to b.

dplyr::inner_join(a, b, by = "x1")
Join data. Retain only rows in both sets.

dplyr::full_join(a, b, by = "x1")
Join data. Retain all values, all rows.

x1 x2
A 1
B 2

x1 x2
C 3

y z

dplyr::semi_join(a, b, by = "x1")
All rows in a that have a match in b.

dplyr::anti_join(a, b, by = "x1")
All rows in a that do not have a match in b.

dplyr::intersect(y, z)
Rows that appear in both y and z.

dplyr::union(y, z)
Rows that appear in either or both y and z.

dplyr::setdiff(y, z)
Rows that appear in y but not z.

dplyr::bind_rows(y, z)
Append z to y as new rows.

dplyr::bind_cols(y, z)
Append z to y as new columns.
Caution: matches rows by position.

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets

dplyr::group_by(iris, Species)
Group data into rows with the same value of Species.

dplyr::ungroup(iris)
Remove grouping information from data frame.

iris %>% group_by(Species) %>% summarise(…)
Compute separate summary row for each group.

Combine Data Sets

Group Data

Summarise Data Make New Variables

ir ir
C

dplyr::summarise(iris, avg = mean(Sepal.Length))
Summarise data into single row of values.

dplyr::summarise_each(iris, funs(mean))
Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)
Count number of rows with each unique value of
variable (with or without weights).

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)
Compute and append one or more new columns.

dplyr::mutate_each(iris, funs(min_rank))
Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)
Compute one or more new columns. Drop original columns.

Summarise uses summary functions, functions that
take a vector of values and return a single value, such as:

Mutate uses window functions, functions that take a vector of
values and return another vector of values, such as:

window
function

summary
function

dplyr::first
First value of a vector.

dplyr::last
Last value of a vector.

dplyr::nth
Nth value of a vector.

dplyr::n
of values in a vector.

dplyr::n_distinct
of distinct values in
a vector.

IQR
IQR of a vector.

min
Minimum value in a vector.

max
Maximum value in a vector.

mean
Mean value of a vector.

median
Median value of a vector.

var
Variance of a vector.

sd
Standard deviation of a
vector.

dplyr::lead
Copy with values shifted by 1.

dplyr::lag
Copy with values lagged by 1.

dplyr::dense_rank
Ranks with no gaps.

dplyr::min_rank
Ranks. Ties get min rank.

dplyr::percent_rank
Ranks rescaled to [0, 1].

dplyr::row_number
Ranks. Ties got to first value.

dplyr::ntile
Bin vector into n buckets.

dplyr::between
Are values between a and b?

dplyr::cume_dist
Cumulative distribution.

dplyr::cumall
Cumulative all

dplyr::cumany
Cumulative any

dplyr::cummean
Cumulative mean

cumsum
Cumulative sum

cummax
Cumulative max

cummin
Cumulative min

cumprod
Cumulative prod

pmax
Element-wise max

pmin
Element-wise min

iris %>% group_by(Species) %>% mutate(…)
Compute new variables by group.

x1 x2
A 1
B 2
C 3

x1 x3
A T
B F
D T+ =

x1 x2 x3
A 1 T
B 2 F
C 3 NA

x1 x3 x2
A T 1
B F 2
D T NA

x1 x2 x3
A 1 T
B 2 F

x1 x2 x3
A 1 T
B 2 F
C 3 NA
D NA T

x1 x2
A 1
B 2
C 3

x1 x2
B 2
C 3
D 4+ =

x1 x2
B 2
C 3

x1 x2
A 1
B 2
C 3
D 4

x1 x2
A 1

x1 x2
A 1
B 2
C 3
B 2
C 3
D 4

x1 x2 x1 x2
A 1 B 2
B 2 C 3
C 3 D 4

Mutating Joins

Filtering Joins

Binding

Set Operations

dplyr::left_join(a, b, by = "x1")
Join matching rows from b to a.

a b

dplyr::right_join(a, b, by = "x1")
Join matching rows from a to b.

dplyr::inner_join(a, b, by = "x1")
Join data. Retain only rows in both sets.

dplyr::full_join(a, b, by = "x1")
Join data. Retain all values, all rows.

x1 x2
A 1
B 2

x1 x2
C 3

y z

dplyr::semi_join(a, b, by = "x1")
All rows in a that have a match in b.

dplyr::anti_join(a, b, by = "x1")
All rows in a that do not have a match in b.

dplyr::intersect(y, z)
Rows that appear in both y and z.

dplyr::union(y, z)
Rows that appear in either or both y and z.

dplyr::setdiff(y, z)
Rows that appear in y but not z.

dplyr::bind_rows(y, z)
Append z to y as new rows.

dplyr::bind_cols(y, z)
Append z to y as new columns.
Caution: matches rows by position.

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets
(b)

dplyr::group_by(iris, Species)
Group data into rows with the same value of Species.

dplyr::ungroup(iris)
Remove grouping information from data frame.

iris %>% group_by(Species) %>% summarise(…)
Compute separate summary row for each group.

Combine Data Sets

Group Data

Summarise Data Make New Variables

ir ir
C

dplyr::summarise(iris, avg = mean(Sepal.Length))
Summarise data into single row of values.

dplyr::summarise_each(iris, funs(mean))
Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)
Count number of rows with each unique value of
variable (with or without weights).

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)
Compute and append one or more new columns.

dplyr::mutate_each(iris, funs(min_rank))
Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)
Compute one or more new columns. Drop original columns.

Summarise uses summary functions, functions that
take a vector of values and return a single value, such as:

Mutate uses window functions, functions that take a vector of
values and return another vector of values, such as:

window
function

summary
function

dplyr::first
First value of a vector.

dplyr::last
Last value of a vector.

dplyr::nth
Nth value of a vector.

dplyr::n
of values in a vector.

dplyr::n_distinct
of distinct values in
a vector.

IQR
IQR of a vector.

min
Minimum value in a vector.

max
Maximum value in a vector.

mean
Mean value of a vector.

median
Median value of a vector.

var
Variance of a vector.

sd
Standard deviation of a
vector.

dplyr::lead
Copy with values shifted by 1.

dplyr::lag
Copy with values lagged by 1.

dplyr::dense_rank
Ranks with no gaps.

dplyr::min_rank
Ranks. Ties get min rank.

dplyr::percent_rank
Ranks rescaled to [0, 1].

dplyr::row_number
Ranks. Ties got to first value.

dplyr::ntile
Bin vector into n buckets.

dplyr::between
Are values between a and b?

dplyr::cume_dist
Cumulative distribution.

dplyr::cumall
Cumulative all

dplyr::cumany
Cumulative any

dplyr::cummean
Cumulative mean

cumsum
Cumulative sum

cummax
Cumulative max

cummin
Cumulative min

cumprod
Cumulative prod

pmax
Element-wise max

pmin
Element-wise min

iris %>% group_by(Species) %>% mutate(…)
Compute new variables by group.

x1 x2
A 1
B 2
C 3

x1 x3
A T
B F
D T+ =

x1 x2 x3
A 1 T
B 2 F
C 3 NA

x1 x3 x2
A T 1
B F 2
D T NA

x1 x2 x3
A 1 T
B 2 F

x1 x2 x3
A 1 T
B 2 F
C 3 NA
D NA T

x1 x2
A 1
B 2
C 3

x1 x2
B 2
C 3
D 4+ =

x1 x2
B 2
C 3

x1 x2
A 1
B 2
C 3
D 4

x1 x2
A 1

x1 x2
A 1
B 2
C 3
B 2
C 3
D 4

x1 x2 x1 x2
A 1 B 2
B 2 C 3
C 3 D 4

Mutating Joins

Filtering Joins

Binding

Set Operations

dplyr::left_join(a, b, by = "x1")
Join matching rows from b to a.

a b

dplyr::right_join(a, b, by = "x1")
Join matching rows from a to b.

dplyr::inner_join(a, b, by = "x1")
Join data. Retain only rows in both sets.

dplyr::full_join(a, b, by = "x1")
Join data. Retain all values, all rows.

x1 x2
A 1
B 2

x1 x2
C 3

y z

dplyr::semi_join(a, b, by = "x1")
All rows in a that have a match in b.

dplyr::anti_join(a, b, by = "x1")
All rows in a that do not have a match in b.

dplyr::intersect(y, z)
Rows that appear in both y and z.

dplyr::union(y, z)
Rows that appear in either or both y and z.

dplyr::setdiff(y, z)
Rows that appear in y but not z.

dplyr::bind_rows(y, z)
Append z to y as new rows.

dplyr::bind_cols(y, z)
Append z to y as new columns.
Caution: matches rows by position.

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets

dplyr::group_by(iris, Species)
Group data into rows with the same value of Species.

dplyr::ungroup(iris)
Remove grouping information from data frame.

iris %>% group_by(Species) %>% summarise(…)
Compute separate summary row for each group.

Combine Data Sets

Group Data

Summarise Data Make New Variables

ir ir
C

dplyr::summarise(iris, avg = mean(Sepal.Length))
Summarise data into single row of values.

dplyr::summarise_each(iris, funs(mean))
Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)
Count number of rows with each unique value of
variable (with or without weights).

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)
Compute and append one or more new columns.

dplyr::mutate_each(iris, funs(min_rank))
Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)
Compute one or more new columns. Drop original columns.

Summarise uses summary functions, functions that
take a vector of values and return a single value, such as:

Mutate uses window functions, functions that take a vector of
values and return another vector of values, such as:

window
function

summary
function

dplyr::first
First value of a vector.

dplyr::last
Last value of a vector.

dplyr::nth
Nth value of a vector.

dplyr::n
of values in a vector.

dplyr::n_distinct
of distinct values in
a vector.

IQR
IQR of a vector.

min
Minimum value in a vector.

max
Maximum value in a vector.

mean
Mean value of a vector.

median
Median value of a vector.

var
Variance of a vector.

sd
Standard deviation of a
vector.

dplyr::lead
Copy with values shifted by 1.

dplyr::lag
Copy with values lagged by 1.

dplyr::dense_rank
Ranks with no gaps.

dplyr::min_rank
Ranks. Ties get min rank.

dplyr::percent_rank
Ranks rescaled to [0, 1].

dplyr::row_number
Ranks. Ties got to first value.

dplyr::ntile
Bin vector into n buckets.

dplyr::between
Are values between a and b?

dplyr::cume_dist
Cumulative distribution.

dplyr::cumall
Cumulative all

dplyr::cumany
Cumulative any

dplyr::cummean
Cumulative mean

cumsum
Cumulative sum

cummax
Cumulative max

cummin
Cumulative min

cumprod
Cumulative prod

pmax
Element-wise max

pmin
Element-wise min

iris %>% group_by(Species) %>% mutate(…)
Compute new variables by group.

x1 x2
A 1
B 2
C 3

x1 x3
A T
B F
D T+ =

x1 x2 x3
A 1 T
B 2 F
C 3 NA

x1 x3 x2
A T 1
B F 2
D T NA

x1 x2 x3
A 1 T
B 2 F

x1 x2 x3
A 1 T
B 2 F
C 3 NA
D NA T

x1 x2
A 1
B 2
C 3

x1 x2
B 2
C 3
D 4+ =

x1 x2
B 2
C 3

x1 x2
A 1
B 2
C 3
D 4

x1 x2
A 1

x1 x2
A 1
B 2
C 3
B 2
C 3
D 4

x1 x2 x1 x2
A 1 B 2
B 2 C 3
C 3 D 4

Mutating Joins

Filtering Joins

Binding

Set Operations

dplyr::left_join(a, b, by = "x1")
Join matching rows from b to a.

a b

dplyr::right_join(a, b, by = "x1")
Join matching rows from a to b.

dplyr::inner_join(a, b, by = "x1")
Join data. Retain only rows in both sets.

dplyr::full_join(a, b, by = "x1")
Join data. Retain all values, all rows.

x1 x2
A 1
B 2

x1 x2
C 3

y z

dplyr::semi_join(a, b, by = "x1")
All rows in a that have a match in b.

dplyr::anti_join(a, b, by = "x1")
All rows in a that do not have a match in b.

dplyr::intersect(y, z)
Rows that appear in both y and z.

dplyr::union(y, z)
Rows that appear in either or both y and z.

dplyr::setdiff(y, z)
Rows that appear in y but not z.

dplyr::bind_rows(y, z)
Append z to y as new rows.

dplyr::bind_cols(y, z)
Append z to y as new columns.
Caution: matches rows by position.

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets

(c)

Data Wrangling
with dplyr and tidyr

Cheat Sheet

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)
Converts data to tbl class. tbl’s are easier to examine than
data frames. R displays only the data that fits onscreen:

dplyr::glimpse(iris)
Information dense summary of tbl data.

utils::View(iris)
View data set in spreadsheet-like display (note capital V).

Source: local data frame [150 x 5]

 Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
..
Variables not shown: Petal.Width (dbl),
 Species (fctr)

dplyr::%>%
Passes object on left hand side as first argument (or .
argument) of function on righthand side.

"Piping" with %>% makes code more readable, e.g.
iris %>%
 group_by(Species) %>%
 summarise(avg = mean(Sepal.Width)) %>%
 arrange(avg)

 x %>% f(y) is the same as f(x, y)
y %>% f(x, ., z) is the same as f(x, y, z)

Reshaping Data - Change the layout of a data set

Subset Observations (Rows) Subset Variables (Columns)

F M A

Each variable is saved
in its own column

F M A

Each observation is
saved in its own row

In a tidy
data set: &

Tidy Data - A foundation for wrangling in R

Tidy data complements R’s vectorized
operations. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.

FAM

M * A

*

tidyr::gather(cases, "year", "n", 2:4)
Gather columns into rows.

tidyr::unite(data, col, ..., sep)
Unite several columns into one.

dplyr::data_frame(a = 1:3, b = 4:6)
Combine vectors into data frame
(optimized).

dplyr::arrange(mtcars, mpg)
Order rows by values of a column
(low to high).

dplyr::arrange(mtcars, desc(mpg))
Order rows by values of a column
(high to low).

dplyr::rename(tb, y = year)
Rename the columns of a data
frame.

tidyr::spread(pollution, size, amount)
Spread rows into columns.

tidyr::separate(storms, date, c("y", "m", "d"))
Separate one column into several.

wwwwwwA1005A1013A1010A1010

wwp110110100745451009wwp110110100745451009 wwp110110100745451009wwp110110100745451009

wppw11010071007110451009100945wwwww110110110110110 wwww
dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.
dplyr::distinct(iris)

Remove duplicate rows.
dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.
dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.
dplyr::slice(iris, 10:15)

Select rows by position.
dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

< Less than != Not equal to
> Greater than %in% Group membership
== Equal to is.na Is NA
<= Less than or equal to !is.na Is not NA
>= Greater than or equal to &,|,!,xor,any,all Boolean operators

Logic in R - ?Comparison, ?base::Logic

dplyr::select(iris, Sepal.Width, Petal.Length, Species)
Select columns by name or helper function.

Helper functions for select - ?select
select(iris, contains("."))

Select columns whose name contains a character string.
select(iris, ends_with("Length"))

Select columns whose name ends with a character string.
select(iris, everything())

Select every column.
select(iris, matches(".t."))

Select columns whose name matches a regular expression.
select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.
select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.
select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, -Species)

Select all columns except Species.
Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15

wwwwwwA1005A1013A1010A1010

devtools::install_github("rstudio/EDAWR") for data sets

(d)

Data Wrangling
with dplyr and tidyr

Cheat Sheet

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)
Converts data to tbl class. tbl’s are easier to examine than
data frames. R displays only the data that fits onscreen:

dplyr::glimpse(iris)
Information dense summary of tbl data.

utils::View(iris)
View data set in spreadsheet-like display (note capital V).

Source: local data frame [150 x 5]

 Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
..
Variables not shown: Petal.Width (dbl),
 Species (fctr)

dplyr::%>%
Passes object on left hand side as first argument (or .
argument) of function on righthand side.

"Piping" with %>% makes code more readable, e.g.
iris %>%
 group_by(Species) %>%
 summarise(avg = mean(Sepal.Width)) %>%
 arrange(avg)

 x %>% f(y) is the same as f(x, y)
y %>% f(x, ., z) is the same as f(x, y, z)

Reshaping Data - Change the layout of a data set

Subset Observations (Rows) Subset Variables (Columns)

F M A

Each variable is saved
in its own column

F M A

Each observation is
saved in its own row

In a tidy
data set: &

Tidy Data - A foundation for wrangling in R

Tidy data complements R’s vectorized
operations. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.

FAM

M * A

*

tidyr::gather(cases, "year", "n", 2:4)
Gather columns into rows.

tidyr::unite(data, col, ..., sep)
Unite several columns into one.

dplyr::data_frame(a = 1:3, b = 4:6)
Combine vectors into data frame
(optimized).

dplyr::arrange(mtcars, mpg)
Order rows by values of a column
(low to high).

dplyr::arrange(mtcars, desc(mpg))
Order rows by values of a column
(high to low).

dplyr::rename(tb, y = year)
Rename the columns of a data
frame.

tidyr::spread(pollution, size, amount)
Spread rows into columns.

tidyr::separate(storms, date, c("y", "m", "d"))
Separate one column into several.

wwwwwwA1005A1013A1010A1010

wwp110110100745451009wwp110110100745451009 wwp110110100745451009wwp110110100745451009

wppw11010071007110451009100945wwwww110110110110110 wwww
dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.
dplyr::distinct(iris)

Remove duplicate rows.
dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.
dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.
dplyr::slice(iris, 10:15)

Select rows by position.
dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

< Less than != Not equal to
> Greater than %in% Group membership
== Equal to is.na Is NA
<= Less than or equal to !is.na Is not NA
>= Greater than or equal to &,|,!,xor,any,all Boolean operators

Logic in R - ?Comparison, ?base::Logic

dplyr::select(iris, Sepal.Width, Petal.Length, Species)
Select columns by name or helper function.

Helper functions for select - ?select
select(iris, contains("."))

Select columns whose name contains a character string.
select(iris, ends_with("Length"))

Select columns whose name ends with a character string.
select(iris, everything())

Select every column.
select(iris, matches(".t."))

Select columns whose name matches a regular expression.
select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.
select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.
select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, -Species)

Select all columns except Species.
Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15

wwwwwwA1005A1013A1010A1010

devtools::install_github("rstudio/EDAWR") for data sets

(e)

Data Wrangling
with dplyr and tidyr

Cheat Sheet

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)
Converts data to tbl class. tbl’s are easier to examine than
data frames. R displays only the data that fits onscreen:

dplyr::glimpse(iris)
Information dense summary of tbl data.

utils::View(iris)
View data set in spreadsheet-like display (note capital V).

Source: local data frame [150 x 5]

 Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
..
Variables not shown: Petal.Width (dbl),
 Species (fctr)

dplyr::%>%
Passes object on left hand side as first argument (or .
argument) of function on righthand side.

"Piping" with %>% makes code more readable, e.g.
iris %>%
 group_by(Species) %>%
 summarise(avg = mean(Sepal.Width)) %>%
 arrange(avg)

 x %>% f(y) is the same as f(x, y)
y %>% f(x, ., z) is the same as f(x, y, z)

Reshaping Data - Change the layout of a data set

Subset Observations (Rows) Subset Variables (Columns)

F M A

Each variable is saved
in its own column

F M A

Each observation is
saved in its own row

In a tidy
data set: &

Tidy Data - A foundation for wrangling in R

Tidy data complements R’s vectorized
operations. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.

FAM

M * A

*

tidyr::gather(cases, "year", "n", 2:4)
Gather columns into rows.

tidyr::unite(data, col, ..., sep)
Unite several columns into one.

dplyr::data_frame(a = 1:3, b = 4:6)
Combine vectors into data frame
(optimized).

dplyr::arrange(mtcars, mpg)
Order rows by values of a column
(low to high).

dplyr::arrange(mtcars, desc(mpg))
Order rows by values of a column
(high to low).

dplyr::rename(tb, y = year)
Rename the columns of a data
frame.

tidyr::spread(pollution, size, amount)
Spread rows into columns.

tidyr::separate(storms, date, c("y", "m", "d"))
Separate one column into several.

wwwwwwA1005A1013A1010A1010

wwp110110100745451009wwp110110100745451009 wwp110110100745451009wwp110110100745451009

wppw11010071007110451009100945wwwww110110110110110 wwww
dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.
dplyr::distinct(iris)

Remove duplicate rows.
dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.
dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.
dplyr::slice(iris, 10:15)

Select rows by position.
dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

< Less than != Not equal to
> Greater than %in% Group membership
== Equal to is.na Is NA
<= Less than or equal to !is.na Is not NA
>= Greater than or equal to &,|,!,xor,any,all Boolean operators

Logic in R - ?Comparison, ?base::Logic

dplyr::select(iris, Sepal.Width, Petal.Length, Species)
Select columns by name or helper function.

Helper functions for select - ?select
select(iris, contains("."))

Select columns whose name contains a character string.
select(iris, ends_with("Length"))

Select columns whose name ends with a character string.
select(iris, everything())

Select every column.
select(iris, matches(".t."))

Select columns whose name matches a regular expression.
select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.
select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.
select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, -Species)

Select all columns except Species.
Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15

wwwwwwA1005A1013A1010A1010

devtools::install_github("rstudio/EDAWR") for data sets

(f)

dplyr::group_by(iris, Species)
Group data into rows with the same value of Species.

dplyr::ungroup(iris)
Remove grouping information from data frame.

iris %>% group_by(Species) %>% summarise(…)
Compute separate summary row for each group.

Combine Data Sets

Group Data

Summarise Data Make New Variables

ir ir
C

dplyr::summarise(iris, avg = mean(Sepal.Length))
Summarise data into single row of values.

dplyr::summarise_each(iris, funs(mean))
Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)
Count number of rows with each unique value of
variable (with or without weights).

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)
Compute and append one or more new columns.

dplyr::mutate_each(iris, funs(min_rank))
Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)
Compute one or more new columns. Drop original columns.

Summarise uses summary functions, functions that
take a vector of values and return a single value, such as:

Mutate uses window functions, functions that take a vector of
values and return another vector of values, such as:

window
function

summary
function

dplyr::first
First value of a vector.

dplyr::last
Last value of a vector.

dplyr::nth
Nth value of a vector.

dplyr::n
of values in a vector.

dplyr::n_distinct
of distinct values in
a vector.

IQR
IQR of a vector.

min
Minimum value in a vector.

max
Maximum value in a vector.

mean
Mean value of a vector.

median
Median value of a vector.

var
Variance of a vector.

sd
Standard deviation of a
vector.

dplyr::lead
Copy with values shifted by 1.

dplyr::lag
Copy with values lagged by 1.

dplyr::dense_rank
Ranks with no gaps.

dplyr::min_rank
Ranks. Ties get min rank.

dplyr::percent_rank
Ranks rescaled to [0, 1].

dplyr::row_number
Ranks. Ties got to first value.

dplyr::ntile
Bin vector into n buckets.

dplyr::between
Are values between a and b?

dplyr::cume_dist
Cumulative distribution.

dplyr::cumall
Cumulative all

dplyr::cumany
Cumulative any

dplyr::cummean
Cumulative mean

cumsum
Cumulative sum

cummax
Cumulative max

cummin
Cumulative min

cumprod
Cumulative prod

pmax
Element-wise max

pmin
Element-wise min

iris %>% group_by(Species) %>% mutate(…)
Compute new variables by group.

x1 x2
A 1
B 2
C 3

x1 x3
A T
B F
D T+ =

x1 x2 x3
A 1 T
B 2 F
C 3 NA

x1 x3 x2
A T 1
B F 2
D T NA

x1 x2 x3
A 1 T
B 2 F

x1 x2 x3
A 1 T
B 2 F
C 3 NA
D NA T

x1 x2
A 1
B 2
C 3

x1 x2
B 2
C 3
D 4+ =

x1 x2
B 2
C 3

x1 x2
A 1
B 2
C 3
D 4

x1 x2
A 1

x1 x2
A 1
B 2
C 3
B 2
C 3
D 4

x1 x2 x1 x2
A 1 B 2
B 2 C 3
C 3 D 4

Mutating Joins

Filtering Joins

Binding

Set Operations

dplyr::left_join(a, b, by = "x1")
Join matching rows from b to a.

a b

dplyr::right_join(a, b, by = "x1")
Join matching rows from a to b.

dplyr::inner_join(a, b, by = "x1")
Join data. Retain only rows in both sets.

dplyr::full_join(a, b, by = "x1")
Join data. Retain all values, all rows.

x1 x2
A 1
B 2

x1 x2
C 3

y z

dplyr::semi_join(a, b, by = "x1")
All rows in a that have a match in b.

dplyr::anti_join(a, b, by = "x1")
All rows in a that do not have a match in b.

dplyr::intersect(y, z)
Rows that appear in both y and z.

dplyr::union(y, z)
Rows that appear in either or both y and z.

dplyr::setdiff(y, z)
Rows that appear in y but not z.

dplyr::bind_rows(y, z)
Append z to y as new rows.

dplyr::bind_cols(y, z)
Append z to y as new columns.
Caution: matches rows by position.

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15devtools::install_github("rstudio/EDAWR") for data sets
3. This question concerns the airlines database which is very big. The database consists of four different

types of information (in four different data tables): data about 148 million flights (occupying 15
gigabytes on disk), data about 1,491 carriers (airlines) (≤ 1 megabyte), data about 3,376 airports (≤
1 megabyte), and data about 5,029 planes (≤ 1 megabyte).

(a) Suppose that a friend told you she was going to analyze this data by opening it in a spreadsheet
application on her laptop. Why is this not a good idea?

(b) Now suppose that the friend tells you that she wants to reproduce the route map for Delta Airlines
during the month of her birth, which occurred in June of 1995. What data would be needed to
create such a map? Describe how you would retrieve that data from the airlines data set. Be
as specific as you can, but you do not need to write any code (answer should be in words).

4. The lonely recording device: This problem demonstrates the ways that empirical simulations can
complement analytic (closed-form) solutions. Consider an example where a recording device that
measures remote activity is placed in a remote location. The time, T, to failure of the remote device
has an exponential distribution with mean of 3 years. Since the location is so remote, the device will
not be monitored during its first two years of service. As a result, the time to discovery of its failure is
X = max(T, 2). The problem here is to determine the average of the time to discovery (in probability
parlance, the expected value of the observed variable X, E[X]).

The analytic solution is fairly straightforward, but requires calculus. We need to evaluate:

E[X] =

∫ 2

0

2f(u)du+

∫ ∞
2

uf(u)du

where f(u) = 3exp(−3u) for u > 0. But is calculus strictly necessary here? Lay out the steps to
estimate (/check) the value for the average time to discovery.

5. Nurses in an inner-city hospital were unknowingly observed on their use of latex gloves during proce-
dures for which glove use is recommended. The nurses then attended a presentation on the importance
of glove use. One month after the presentation, the same nurses were observed again. Here are the
proportions of procedures for which each nurse wore gloves:

Nurse Before After Nurse Before After
1 0.500 0.857 8 0.000 1.000
2 0.500 0.833 9 0.000 0.667
3 1.000 1.000 10 0.167 1.000
4 0.000 1.000 11 0.000 0.750
5 0.000 1.000 12 0.000 1.000
6 0.000 1.000 13 0.000 1.000
7 1.000 1.000 14 1.000 1.000

(a) Describe the null hypothesis and test statistic of interest.

(b) For a permutation test, describe the process for permuting the observations above. Hint: an
important factor is recognizing the dependency between before and after for each nurse.

(c) When calculating a p-value, is interest in whether the observed difference is unusually large,
unusually small, or either unusually small or large?

(d) If you are mainly interested in whether or not the effect of the intervention is significant at the 5%
level, an alternative approach is to give a BS CI for the difference in means. After constructing a
CI, how would you evaluate the interval to determine whether or not the null hypothesis is true?

6. When constructing a 97% confidence interval, which percentiles of the bootstrap distribution (of your
test statistics) give the end points of the interval [for a percentile BS interval]?

7. Explain what is wrong with each of the following statements:

(a) The bootstrap distribution is created by resampling with replacement from the population.

(b) The bootstrap distribution is created by resampling without replacement from the original sample.

(c) When generating the resamples, it is best to use a sample size larger than the size of the original
sample.

(d) The bootstrap sampling distribution will be similar to the true sampling distribution in shape,
center, and spread.

8. We often talk about the standard deviation of the data and the standard error of the statistic. Explain
the difference between the two (not the difference in the words, but the difference in the ideas/concepts)
as if to someone who has not taken a statistics class before.

9. In trying to decide which type of bootstrap CI to use, what would you want to know about the intervals?
That is, given infinite information (e.g., about the population), and infinite ability to compute (e.g.,
create intervals), the best interval would be the one that: . Explain (you should be able to
come up with at least two things about the interval).

10. What is the primary reason to bootstrap data? Or said differently, what comes from bootstrapping?

11. What is the primary reason to permute data (in the context of a permutation test)? Or said differently,
what comes from permuting data?

12. Consider the following scenario: researchers are interested in testing the ratio (instead of difference)
of average number of hours spent watching TV for kids who don’t have a stay-at-home parent versus
kids who do have a stay-at-home parent. The researchers collect a random sample of size 50 from each
group and calculate the mean number of hours spent watching TV for each group.

(a) Why can’t traditional methods (e.g., those learned in intro stats) be used to approach this prob-
lem? (just 2-3 sentences.)

(b) Suppose you have used a permutation approach to the problem.

i. One of the steps in the permutation test is “permute the data.” Explain (using words or an
example but not R code) what it means to “permute the data.” (Explain only this one step
in the algorithm.)

ii. Explain how a permutation approach to the research problem works. That is, give the ra-
tionale for a permutation test (not the algorithm for a permutation test). Suppose I don’t
know anything about permutation tests, but I do know statistics (i.e., demonstrate that you
understand permutation tests.)

(c) Suppose you have used a bootstrap approach to this problem (same problem of trying to discern
whether the average number of hours spent watching TV for kids who don’t have a stay-at-home
parent as compared to those that do is the same - as measured by the ratio).

i. One of the steps in the bootstrap algorithm is “bootstrap the data.” Explain (using words or
an algorithm, but not R code) what it means to “bootstrap the data.” (Explain only this one
step in the algorithm.)

ii. Describe what each of: θ, θ̂, and θ̂∗ are in this context.

iii. You and a friend are discussing bootstrapping. You both agree that the logic of building
standard confidence intervals is quite clear in your heads:

P

(
z.05 <

θ̂ − θ

SE(θ̂)
< z.95

)
= 0.9

P (θ̂ − z.95SE(θ̂) < θ < θ̂ − z.05SE(θ̂)) = 0.9

where the endpoints of the CI are random.

• Report why it is often not appropriate to use zα/2 (e.g., z0.05, the quantiles from the
standard normal distribution) quantiles to create confidence intervals for arbitrary pa-
rameters.

• How can a bootstrap-t interval be made when the value zα/2 is not appropriate? Give
specific details (but no R code) for how to create the interval above without using the z
multiplier.

13. The reverse percentile interval is a bootstrap confidence interval we did not discuss in class. It is based
on the key assumption that:

θ̂ − θ
D
≈ θ̂∗ − θ̂.

That is, the shifted distribution of θ̂ is approximately equal to the shifted distribution of θ̂∗.

Let’s say that through the bootstrap procedure, you find 1000 values for θ̂∗ − θ̂. [Feel free to visualize
/ sketch those values in a histogram.]

The confidence procedure starts by considering the following probability statement:

P (c1 ≤ θ̂ − θ ≤ c2) = 1 − α.

(a) (+8 pts) Using your bootstrap information, what values do you use to approximate c1 and c2?
Be specific.

(b) (+8 pts) Given the values of c1 and c2 above, derive a (1 − α)100% confidence interval for θ.
Show the steps you used to come up with the interval.

(c) (+8 pts) Comment on the following claim in two ways: (1) what is wrong with the claim? (2) what
is a correct interpretation of the “95% of the time” part of the confidence interval conclusion?

Claim: The bootstrap confidence interval above captures 95% of the sample statistics, θ̂,
across repeated samples.

14. Consider the NY Times mall graphic below.

What does a recession look like? Well, here’s one view, as seen through retail sales. The
theoretical mall maps below show 27 companies with stores or restaurants in malls across
America. (In some cases, these companies own more than one chain of stores.) In the bottom
map, the change in the size of the stores is determined by sales in the first quarter of 2009
as compared to the same quarter in the previous year. Color in the bottom map is meant to
indicate the depth of the drop – or the height of the rise – in sales. The deeper the red, the
steeper the loss. (“The Fall of the Mall”, May 31, 2009, NY Times)

(a) List each of the variables displayed in the graphic, along with a few typical values for each.

(b) List the visual cues (at least 3) used in the data graphic and explain how each visual cue is linked
to each variable.

(c) Assuming you can zoom in on the figure to read it clearly (i.e., don’t say font size), name two
(graphical) aspects of the figure that make it problematic.

(d) Examine the graphic carefully: Describe in words what information you think the data graphic
conveys. Do not just summarize the data - interpret the data in the context of the problem and
report what it means. [Note: information is meaningful to human beings - it is not the same
thing as data.]

15. Suppose that we have two rectangular arrays of data, labeled students and houses. students contains
information about individual Pomona students (e.g., student ID, name, date of birth, class year, dorm
name, etc.). Each row in students contains data about one student. houses contains data about Pomona
dorms (e.g., dorm name, capacity, street address, etc.). Each row in houses contains data about one
Pomona dorm.

Suppose further that we want to generate a student address book. The address book will consist of two
columns of data: the first column will contain the student’s name and the second will be the address
of the dorm where he or she lives.

(a) Describe, in words, a series of data wrangling operations that you could perform in order to
achieve the address book. Be as specific as you can about what the operation will do and how
it must be specified. Note: you do not have to write or reference any R code (and your answer
must be in words).

(b) It is important that every student appears in the address book, regardless of whether he or she
lives on campus. But we’d like a concise address book, so empty entries should not occur. Would
a full, left, or inner join be most appropriate here? Explain why.

(c) Suppose now that only students from the Class of 2016 are to be included in the address book.
What additional data wrangling step should you perform to achieve this? Again, be specific, but
no need to write code.

