November 11 + 13, 2024
tidymodels
syntaxSVMs create both linear and non-linear decision boundaries. They are incredibly efficient because of the kernel trick which allows the computation to be done in a high dimension.
\(\rightarrow\) see class notes for all technical details
Mathematics of the optimization to find the widest linear boundary in a space where the two groups are completely separable.
Note from derivation: both the optimization and the application are based on dot products.
Transform the data to a higher space so that the points are linearly separable. Perform SVM in that space.
Recognize that “performing SVM in higher space” is exactly equivalent to using a kernel in the original dimension.
Allow for points to cross the boundary using soft margins.
If a wiggly boundary is really best, and the value of \(\gamma\) should be high to represent the high model complexity.
But if the boundary has low complexity, then the best value of \(\gamma\) is probably much lower.
linear \[K({\bf x}, {\bf y}) = {\bf x} \cdot{\bf y}\] Note, the only tuning parameter is the penalty/cost parameter \(C\)).
polynomial \[K_P({\bf x}, {\bf y}) =(\gamma {\bf x}\cdot {\bf y} + r)^d = \phi_P({\bf x}) \cdot \phi_P({\bf y}) \ \ \ \ \gamma > 0\] Note, here \(\gamma, r, d\) must be tuned using cross validation (along with the penalty/cost parameter \(C\)).
RBF \[K_{RBF}({\bf x}, {\bf y}) = e^{( - \gamma ||{\bf x} - {\bf y}||^2)} = \phi_{RBF}({\bf x}) \cdot \phi_{RBF}({\bf y})\] Note, here \(\gamma\) must be tuned using cross validation (along with the penalty/cost parameter \(C\)).
sigmoid1 \[K_S({\bf x}, {\bf y}) = \tanh(\gamma {\bf x}\cdot {\bf y} + r) = \phi_S({\bf x}) \cdot \phi_S({\bf y})\] Note, here \(\gamma, r\) must be tuned using cross validation (along with the penalty/cost parameter \(C\)). One benefit of the sigmoid kernel is that it has equivalence to a two-layer perceptron neural network.
penguin_svm_recipe <-
recipe(sex ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g, data = penguin_train) |>
step_normalize(all_predictors())
penguin_svm_recipe
── Recipe ──────────────────────────────────────────────────────────────────────
── Inputs
Number of variables by role
outcome: 1
predictor: 4
── Operations
• Centering and scaling for: all_predictors()
penguin_svm_lin_wflow <- workflow() |>
add_model(penguin_svm_lin) |>
add_recipe(penguin_svm_recipe)
penguin_svm_lin_wflow
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: svm_linear()
── Preprocessor ────────────────────────────────────────────────────────────────
1 Recipe Step
• step_normalize()
── Model ───────────────────────────────────────────────────────────────────────
Linear Support Vector Machine Model Specification (classification)
Computational engine: LiblineaR
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: svm_linear()
── Preprocessor ────────────────────────────────────────────────────────────────
1 Recipe Step
• step_normalize()
── Model ───────────────────────────────────────────────────────────────────────
$TypeDetail
[1] "L2-regularized L2-loss support vector classification dual (L2R_L2LOSS_SVC_DUAL)"
$Type
[1] 1
$W
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g Bias
[1,] 0.248908 1.080195 -0.2256375 1.328448 0.06992734
$Bias
[1] 1
$ClassNames
[1] male female
Levels: female male
$NbClass
[1] 2
attr(,"class")
[1] "LiblineaR"
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: svm_linear()
── Preprocessor ────────────────────────────────────────────────────────────────
1 Recipe Step
• step_normalize()
── Model ───────────────────────────────────────────────────────────────────────
$TypeDetail
[1] "L2-regularized L2-loss support vector classification dual (L2R_L2LOSS_SVC_DUAL)"
$Type
[1] 1
$W
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g Bias
[1,] 0.248908 1.080195 -0.2256375 1.328448 0.06992734
$Bias
[1] 1
$ClassNames
[1] male female
Levels: female male
$NbClass
[1] 2
attr(,"class")
[1] "LiblineaR"
penguin_svm_recipe <-
recipe(sex ~ bill_length_mm + bill_depth_mm + flipper_length_mm +
body_mass_g, data = penguin_train) |>
step_normalize(all_predictors())
penguin_svm_recipe
── Recipe ──────────────────────────────────────────────────────────────────────
── Inputs
Number of variables by role
outcome: 1
predictor: 4
── Operations
• Centering and scaling for: all_predictors()
penguin_svm_rbf_wflow <- workflow() |>
add_model(penguin_svm_rbf) |>
add_recipe(penguin_svm_recipe)
penguin_svm_rbf_wflow
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: svm_rbf()
── Preprocessor ────────────────────────────────────────────────────────────────
1 Recipe Step
• step_normalize()
── Model ───────────────────────────────────────────────────────────────────────
Radial Basis Function Support Vector Machine Model Specification (classification)
Main Arguments:
cost = tune()
rbf_sigma = tune()
Computational engine: kernlab
# the tuned parameters also have default values you can use
penguin_grid <- grid_regular(cost(),
rbf_sigma(),
levels = 8)
penguin_grid
# A tibble: 64 × 2
cost rbf_sigma
<dbl> <dbl>
1 0.000977 0.0000000001
2 0.00431 0.0000000001
3 0.0190 0.0000000001
4 0.0841 0.0000000001
5 0.371 0.0000000001
6 1.64 0.0000000001
7 7.25 0.0000000001
8 32 0.0000000001
9 0.000977 0.00000000268
10 0.00431 0.00000000268
# ℹ 54 more rows
# this takes a few minutes
penguin_svm_rbf_tune <-
penguin_svm_rbf_wflow |>
tune_grid(resamples = penguin_folds,
grid = penguin_grid)
penguin_svm_rbf_tune
# Tuning results
# 4-fold cross-validation
# A tibble: 4 × 4
splits id .metrics .notes
<list> <chr> <list> <list>
1 <split [186/63]> Fold1 <tibble [192 × 6]> <tibble [0 × 3]>
2 <split [187/62]> Fold2 <tibble [192 × 6]> <tibble [0 × 3]>
3 <split [187/62]> Fold3 <tibble [192 × 6]> <tibble [0 × 3]>
4 <split [187/62]> Fold4 <tibble [192 × 6]> <tibble [0 × 3]>
penguin_svm_rbf_best <- finalize_model(
penguin_svm_rbf,
select_best(penguin_svm_rbf_tune, metric = "accuracy"))
penguin_svm_rbf_best
Radial Basis Function Support Vector Machine Model Specification (classification)
Main Arguments:
cost = 0.371498572284237
rbf_sigma = 1
Computational engine: kernlab
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: svm_rbf()
── Preprocessor ────────────────────────────────────────────────────────────────
1 Recipe Step
• step_normalize()
── Model ───────────────────────────────────────────────────────────────────────
Support Vector Machine object of class "ksvm"
SV type: C-svc (classification)
parameter : cost C = 0.371498572284237
Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 1
Number of Support Vectors : 137
Objective Function Value : -31.8005
Training error : 0.052209
Probability model included.
# https://yardstick.tidymodels.org/articles/metric-types.html
class_metrics <- metric_set(accuracy, sensitivity,
specificity, f_meas)
penguin_svm_rbf_final |>
predict(new_data = penguin_test) |>
cbind(penguin_test) |>
class_metrics(truth = sex, estimate = .pred_class)
# A tibble: 4 × 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 accuracy binary 0.893
2 sensitivity binary 0.886
3 specificity binary 0.9
4 f_meas binary 0.897