WS #16 - Support Vector Machines 2

Wednesday, November 13, 2024

Your Name: _____

Names of people you worked with: _____

What is something you want to do, but you know it is hard, so you haven't tried (yet)?

Task:

Consider the following 5 data points in \mathbb{R}^2 .

- 1. Draw the points in \mathbb{R}^2 and argue (1 sentence) that the values are not linearly separable.
- 2. Transform the points using the function $\phi : \mathbb{R}^2 \to \mathbb{R}^2$. Plot the data again, this time using the first and second coordinate of the transformed data.

$$\phi(x_1, x_2) = (x_1^2, x_2)$$

- 3. Sketch the optimal separating hyperplane and the maximal margin on the second figure (that is, in the transformed space: (ϕ_1, ϕ_2)).
- 4. Sketch the separating boundary (which will not necessarily be linear) back into the original space: (x_1, x_2) .

point	x1	x2	class
1	-1	1	red
2	1	0.5	red
3	2	1	purple
4	-2	-1	purple
5	3	-2	purple

Solution:

There are red and purple points on both sides of any two-dimensional hyperplane (i.e., line) one could draw. Therefore, the points are not linearly separable.

In the original space:

In the transformed space with the separating hyperplane:

Note that the **w** vector here is the one such that $\mathbf{w} \cdot \mathbf{u} + b \ge 0$ assigns to purple (in the transformed space). Therefore,

$$x1^{2} \ge 2.5$$
$$\iff x1^{2} - 2.5 \ge 0$$
$$\iff x1^{2} \times 1 + x2 \times 0 - 2.5 \ge 0$$
$$\iff (x1^{2}, x2) \cdot (1, 0) - 2.5 \ge 0$$
$$\iff (\phi1, \phi2) \cdot (1, 0) - 2.5 \ge 0$$

So $\mathbf{w} = (1,0)$ and b = -2.5 in the transformed ϕ space

Back in the original space with the decision boundary

In the original space, there are two "lines" which create the prediction boundary. It should make sense that a linear separating hyperplane in ϕ space does not necessarily produce a linear separating hyperplane in the original space.

